Processing of vibrotactile inputs from hairy skin by neurons of the dorsal column nuclei in the cat.

نویسندگان

  • V Sahai
  • D A Mahns
  • L Robinson
  • N M Perkins
  • G T Coleman
  • M J Rowe
چکیده

The capacity of single neurons of the dorsal column nuclei (DCN) for coding vibrotactile information from the hairy skin has been investigated in anesthetized cats to permit quantitative comparison first with the capacities of DCN neurons responding to glabrous skin vibrotactile inputs and second with those of spinocervical tract neurons responding to vibrotactile inputs from hairy skin. Dynamically sensitive tactile neurons of the DCN the input of which came from hairy skin could be divided into two classes, one associated with hair follicle afferent (HFA) input, the other with Pacinian corpuscle (PC) input. The HFA-related class was most sensitive to low-frequency (<50 Hz) vibration and had a graded response output as a function of vibrotactile intensity changes. PC-related neurons had a broader vibrotactile sensitivity, extending to > or =300 Hz and appeared to derive their input from the margins of hairy skin, near the footpads, or from deeper PC sources such as the interosseous membranes or joints. HFA-related neurons had phaselocked responses to vibration frequencies up to approximately 75 Hz, whereas PC neurons retained this capacity up to frequencies of approximately 300 Hz with tightest phaselocking between 50 and 200 Hz. Quantitative measures of phaselocking revealed that the HFA-related neurons provide the better signal of vibrotactile frequency up to approximately 50 Hz with a switch-over to the PC-related neurons above that value. In conclusion, the functional capacities of these two classes of cuneate neuron appear to account for behavioral vibrotactile frequency discriminative performance in hairy skin, in contrast to the limited capacities of vibrotactile-sensitive neurons within the spinocervical tract system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Somatovisceral interactions in the rat dorsal column nuclei

Recent studies have revealed that noxious visceral inputs travel in the dorsal column pathway, and interactions between colorectal noxious and tactile inputs occur in the ventrobasal thalamus. This investigation was to test whether the somatovisceral interactions also take place in the dorsal column nuclei (DCN). Forty-five single DCN neurons of anesthetized rats responsive to colorectal disten...

متن کامل

Somatovisceral interactions in the rat dorsal column nuclei

Recent studies have revealed that noxious visceral inputs travel in the dorsal column pathway, and interactions between colorectal noxious and tactile inputs occur in the ventrobasal thalamus. This investigation was to test whether the somatovisceral interactions also take place in the dorsal column nuclei (DCN). Forty-five single DCN neurons of anesthetized rats responsive to colorectal disten...

متن کامل

Vibrotactile coding capacities of spinocervical tract neurons in the cat.

The response characteristics and tactile coding capacities of individual dorsal horn neurons, in particular, those of the spinocervical tract (SCT), have been examined in the anesthetized cat. Twenty one of 38 neurons studied were confirmed SCT neurons based on antidromic activation procedures. All had tactile receptive fields on the hairy skin of the hindlimb. Most (29/38) could also be activa...

متن کامل

Postnatal development of spatial coding in the gravity sensing system

The critical maturation time of central otolith neurons in processing spatial orientations was examined in Sprague-Dawley rats. With the use of immuno-hybridization histochemical methods, we observed c-fos expression in vestibular nuclear neurons responding to transverse movement on the horizontal plane as early as P7 and those to antero-posterior stimulation as early as P9. In the inferior oli...

متن کامل

Postnatal development of spatial coding in the gravity sensing system

The critical maturation time of central otolith neurons in processing spatial orientations was examined in Sprague-Dawley rats. With the use of immuno-hybridization histochemical methods, we observed c-fos expression in vestibular nuclear neurons responding to transverse movement on the horizontal plane as early as P7 and those to antero-posterior stimulation as early as P9. In the inferior oli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 3  شماره 

صفحات  -

تاریخ انتشار 2006